Global solutions for the one dimensional water-bag model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Classical Solutions of the “one and One-half” Dimensional

We study the “one and one-half” dimensional Vlasov–Maxwell–Fokker–Planck system and obtain the first results concerning well-posedness of solutions. Specifically, we prove the global-intime existence and uniqueness in the large of classical solutions to the Cauchy problem and a gain in regularity of the distribution function in its momentum argument.

متن کامل

Global Classical Solutions for the “one and One-half” Dimensional Relativistic Vlasov-maxwell-fokker-planck System

In a recent paper Calogero and Alcántara [Kinet. Relat. Models, 4 (2011), pp. 401-426] derived a Lorentz-invariant Fokker-Planck equation, which corresponds to the evolution of a particle distribution associated with relativistic Brownian Motion. We study the “one and one-half” dimensional version of this problem with nonlinear electromagnetic interactions the relativistic Vlasov-Maxwell-Fokker...

متن کامل

Two Dimensional Water Waves in Holomorphic Coordinates Ii: Global Solutions

This article is concerned with the infinite depth water wave equation in two space dimensions. We consider this problem expressed in position-velocity potential holomorphic coordinates, and prove that small localized data leads to global solutions. This article is a continuation of authors’ earlier paper [11].

متن کامل

Global Solutions for the One-dimensional Vlasov-maxwell System for Laser-plasma Interaction

We analyse a reduced 1D Vlasov–Maxwell system introduced recently in the physical literature for studying laser-plasma interaction. This system can be seen as a standard Vlasov equation in which the field is split in two terms: an electrostatic field obtained from Poisson’s equation and a vector potential term satisfying a nonlinear wave equation. Both nonlinearities in the Poisson and wave equ...

متن کامل

The one-dimensional chemotaxis model: global existence and asymptotic profile

Osaki and Yagi (2001) give a proof of global existence for the classical chemotaxis model in one space dimension with use of energy estimates. Here we present an alternative proof which uses the regularity properties of the heat-equation semigroup. With this method we can identify a large selection of admissible spaces, such that the chemotaxis model de nes a global semigroup on these spaces. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Sciences

سال: 2009

ISSN: 1539-6746,1945-0796

DOI: 10.4310/cms.2009.v7.n1.a6